Sonic-FRD
High Performance Fast Recovery Diode
Low Loss and Soft Recovery
Single Diode

Part number (Marking on product)
DHG 30 I 600HA

Features / Advantages:
- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:
- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:
TO-247AD
- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Conditions</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{RRM})</td>
<td>max. repetitive reverse voltage</td>
<td>(T_{VJ} = 25 , ^\circ \text{C})</td>
<td>(600) (\text{V})</td>
</tr>
<tr>
<td>(I_r)</td>
<td>reverse current</td>
<td>(V_R = 600 , \text{V}); (T_{VJ} = 25 , ^\circ \text{C}) (50) (\mu\text{A})</td>
<td>(5) (\text{mA})</td>
</tr>
<tr>
<td>(V_f)</td>
<td>forward voltage</td>
<td>(i_f = 30 , \text{A}); (T_{VJ} = 25 , ^\circ \text{C})</td>
<td>(2.36) (\text{V})</td>
</tr>
<tr>
<td>(I_{FAV})</td>
<td>average forward current</td>
<td>rectangular, (d = 0.5) (T_C = 85 , ^\circ \text{C})</td>
<td>(0.70) (\text{K} , \text{W})</td>
</tr>
<tr>
<td>(V_T)</td>
<td>threshold voltage</td>
<td>(T_{VJ} = 150 , ^\circ \text{C})</td>
<td>(1.31) (\text{V})</td>
</tr>
<tr>
<td>(r_f)</td>
<td>slope resistance</td>
<td>(T_{VJ} = 150 , ^\circ \text{C})</td>
<td>(28.6) (\text{m} , \Omega)</td>
</tr>
<tr>
<td>(R_{BC})</td>
<td>thermal resistance junction to case</td>
<td></td>
<td>(0.70) (\text{K} , \text{W})</td>
</tr>
<tr>
<td>(T_{VJ})</td>
<td>virtual junction temperature</td>
<td></td>
<td>(-55) (\text{°C})</td>
</tr>
<tr>
<td>(P_{mR})</td>
<td>total power dissipation</td>
<td>(T_C = 25 , ^\circ \text{C})</td>
<td>(0.18) (\text{W})</td>
</tr>
<tr>
<td>(I_{FDM})</td>
<td>max. forward surge current</td>
<td>(t_p = 10 , \text{ms} (50 , \text{Hz}), \sin) (T_{VJ} = 45 , ^\circ \text{C})</td>
<td>(0.20) (\text{A})</td>
</tr>
<tr>
<td>(I_{RM})</td>
<td>max. reverse recovery current</td>
<td>(i_f = 30 , \text{A};) (T_{VJ} = 25 , ^\circ \text{C})</td>
<td>(12) (\text{A})</td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>reverse recovery time</td>
<td>(i_f = 30 , \text{A}; \sin); (V_R = 600 , \text{V}); (V_{VJ} = 25 , ^\circ \text{C})</td>
<td>(35) (\text{ns})</td>
</tr>
<tr>
<td>(C_J)</td>
<td>junction capacitance</td>
<td>(V_R = 300 , \text{V}; \ f = 1 , \text{MHz}) (T_{VJ} = 25 , ^\circ \text{C})</td>
<td>(\text{pF})</td>
</tr>
<tr>
<td>(E_{AS})</td>
<td>non-repetitive avalanche energy</td>
<td>(i_{AS} =) (\text{A}; \ L = 100 , \mu\text{H}) (T_{VJ} = 25 , ^\circ \text{C})</td>
<td>(\text{tbd}) (\text{mJ})</td>
</tr>
<tr>
<td>(I_{AR})</td>
<td>repetitive avalanche current</td>
<td>(V_A = 1.5 , V_A); (f = 10 , \text{kHz})</td>
<td>(\text{tbd}) (\text{A})</td>
</tr>
</tbody>
</table>

IXYS reserves the right to change limits, conditions and dimensions.

* Data according to IEC 60747 and per diode unless otherwise specified

© 2006 IXYS all rights reserved
Symbol	**Definition**	**Conditions**	**Ratings** **min.** **typ.** **max.** **Unit**
I_{RMS} | RMS current | per pin* | 70
A
R_{TCH} | thermal resistance case to heatsink | | 0.25
K/W
M_o | mounting torque | | 0.8
1.2
Nm
F_c | mounting force with clip | | 20
120
N
T_{stg} | storage temperature | | -55
150
°C
Weight | | | 6
g

*Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-247AD

IXYS reserves the right to change limits, conditions and dimensions.

* Data according to IEC 60747 and per diode unless otherwise specified

© 2006 IXYS all rights reserved