Power Schottky Rectifier

\[I_{FAV} = 6 \, A \]
\[V_{RRM} = 45 \, V \]
\[V_F = 0.5 \, V \]

\(V_{RSM} \)	\(V_{RRM} \)	Type	marking on product
45 | 45 | DSS 6-0045AS | 6Y045AS

Features
- International standard package
- Very low \(V_F \)
- Extremely low switching losses
- Low \(I_{RM} \) values
- Epoxy meets UL 94V-0

Applications
- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Advantages
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching
- Low losses

Dimensions see Outlines.pdf

Symbol	Conditions	Maximum Ratings
\(I_{RMS} \) | \(V_T = 165°C \); rectangular, \(d = 0.5 \) | 20 \(A \)
\(I_{FAV} \) | \(T_C = 165°C \); rectangular, \(d = 0.5 \) | 6 \(A \)
\(I_{FSM} \) | \(T_{ij} = 45°C \); \(t_p = 10 \, ms \) (50 Hz), sine | 80 \(A \)
\(E_{AS} \) | \(I_{AS} = 13 \, A \); \(L = 180 \, \mu H \); \(T_{ij} = 25°C \); non repetitive | 24 \(mJ \)
\(I_{AR} \) | \(V_A = 1.5 \, V_{RM} \) typ.; \(f = 10 \, kHz \); repetitive | 1.3 \(A \)
\((dv/dt)_{cr} \) | | 1000 \(V/\mu s \)
\(T_{ij} \) | | -55...+175 \(°C \)
\(T_{VSM} \) | | 175 \(°C \)
\(T_{slip} \) | | -55...+150 \(°C \)
\(P_{tot} \) | \(T_C = 25°C \) | 50 \(W \)

Weight | typical | 0.3 \(g \)

Symbol	Conditions	Characteristic Values
\(I_R \) | \(T_{ij} = 25°C \); \(V_H = V_{RRM} \) | typ. max.
\(V_F \) | \(I_p = 6 \, A \); \(T_{ij} = 125°C \) | 0.50 \(V \)
\(I_p = 6 \, A \); \(T_{ij} = 25°C \) | 0.63 \(V \)
\(I_p = 12 \, A \); \(T_{ij} = 125°C \) | 0.59 \(V \)

Dimensions see Outlines.pdf

Pulse test: \(\circ \) Pulse Width = 5 ms, Duty Cycle < 2.0 %

Data according to IEC 60747 and per diode unless otherwise specified

IXYS reserves the right to change limits, Conditions and dimensions.
Fig. 1 Maximum forward voltage drop characteristics

Fig. 2 Typ. value of reverse current I_{R} versus reverse voltage V_{R}

Fig. 3 Typ. junction capacitance C_{T} versus reverse voltage V_{R}

Fig. 4 Average forward current $I_{F(AV)}$ versus case temperature T_{C}

Fig. 5 Forward power loss characteristics

Fig. 6 Transient thermal impedance junction to case at various duty cycles

Note: All curves are per diode